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Materials and Methods 
Mouse lines and expression vectors 

The FosDD-Cre and Camk2Cre strains used in this study have been described previously (33, 
35, 90). Mice were housed, crossed, and analyzed in accordance with protocols approved by the 
IACUC committee. All animals were a mix of C57BL/6 and 129/SV backgrounds. All studies 
were performed with heterozygote FosDD-Cre mice. Neurons carrying a single copy of this allele 
exhibited no apparent defects in native Fos expression in vitro and in vivo (fig. S2). Males and 
females were examined together. The APEX2-mGFP and Cherry-H2B coding sequences were 
inserted into a well-characterized shuttle vector containing the EF1α promoter and a DIO cassette 
for inducibility with Cre (90-92). For constitutive expression of fluorescent proteins, the coding 
sequences were subcloned into a similar vector containing the pan-neuronal Synapsin (Syn) 
promoter.   

AAV production and injections 
AAVs were generated in house using HEK293T cells, purified by Heparin-based affinity 

chromatography, titered by real-time quantitative PCR, and injected into the brains of mice 
carrying the Cre drivers at titers of 2x1012 GC/ml, as previously described (90-93). Mice were 
anesthetized with 1.5%–2% Isoflurane in O2; stereotaxic injections were performed bilaterally into 
the dorsal areas of CA3 and CA1. Viruses were infused for 5 minutes at a rate of 100 nl per minute. 
Although infection of adjacent CA2 could not be avoided, this did not affect our results, as the 
axons of CA2 and CA3 neurons innervating the CA1 are largely segregated (94). 

Drug delivery 
TMP-lactate (Sigma, Cat #T0667) was reconstituted in PBS prior to each experiment (30 

mg/ml) and administered to mice by intraperitoneal injections through a 29 g needle at a dose of 
50 µg/gm body weight. 

Neuronal cultures 
Cortices from P0 pups were dissociated using papain and seeded onto 24-well plates coated 

with poly-D-lysine (Millipore). Cultures were maintained for 1 hour in MEM (Invitrogen) 
supplemented with fetal bovine serum (Invitrogen) and glucose (Sigma), followed by incubation 
in serum-free Neurobasal-A (Invitrogen) supplemented with B27 (Invitrogen) and Glutamax 
(Invitrogen). Cultures were kept at 37°C in humidified incubators with 5% CO2 until use and were 
immunostained as we have previously described (93). 

Fluorescent imaging of brain sections 
Mice were anesthetized with isoflurane and perfused transcardially with 25 ml of ice-cold 

PBS followed by 25 ml of 4% PFA in PBS, using a peristaltic pump. Brains were removed, 
incubated overnight in 0.4% PFA, and sliced in ice-cold PBS using a vibratome. 90 µm thick 
DAPI-stained coronal sections were imaged under the Nikon C2 microscope with 0.3-0.5 μm Z-
intervals using 20x and 40x objectives. Uniform digital manipulations were applied to all images. 

Contextual fear conditioning 
Mice were allowed to explore the conditioning chambers (Med Associates SD) for 3 

minutes before receiving 4 bursts of foot shocks (0.55 mA, with 1-minute intervals between 
shocks). Control groups were exposed to the same visual and olfactory stimuli without receiving 
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foot shocks. Memory retrieval was performed 7 days later by re-exposing the mice to the original 
context. Freezing behavior was measured in 3-minute intervals with 0.75 second bouts. These tests 
were conducted with separate cohorts of mice to ensure the proper functioning of the fear-
conditioning apparatus and to confirm that newly acquired associative memories were not 
disrupted during animal housing prior to tissue collection for SBEM. Given the technical 
challenges of sequentially co-labeling neural ensembles activated during learning and memory 
recall with two distinct EM-compatible markers, and the evidence suggesting that these ensembles 
are largely segregated (12), all 3D-EM analyses were conducted without retrieval. 

 
Electrophysiology 

Mice were anesthetized with isoflurane. Brains were removed and placed into an ice-cold 
oxygenated buffer (95%O2/5%CO2) containing 228 mM sucrose, 2.5 mM KCl, 0.5 mM CaCl2, 
7 mM MgCl2, 26 mM NaHCO3, 1 mM NaH2PO4, and 11 mM glucose. Transverse, 300 μm thick 
slices were sectioned with a vibratome and initially stored at 32°C in oxygenated artificial 
cerebrospinal fluid (ACSF) containing 119 mM NaCl, 2.5 mM KCl, 1 mM NaH2PO4, 26 mM 
NaHCO3, 1.3 mM MgCl2, 2.5 mM CaCl2, 11 mM glucose (pH 7.4, 292 mOsm), and then allowed 
to recover for 1 hour in oxygenated ACSF at 24 °C prior to recording. Membrane and synaptic 
currents were monitored in whole-cell current- and voltage-clamp modes, respectively, using 
Multiclamp 700B amplifier (Molecular Devices, Inc.). Recordings were performed at room 
temperature. The pipette solution contained 135 mM CsMeSO4, 8 mM CsCl, 0.25 mM EGTA, 
10 mM HEPES, 2 mM MgATP, 0.3 mM Na2GTP, 5 mM QX-314, and 7 mM Na2phosphocreatine 
(pH 7.4, 302 mOsm). Synaptic responses were evoked by 1 ms local field stimulation using an 
extracellular electrode. Data were sampled and analyzed with pClamp10 (Molecular Devices, Inc.) 
and OriginPro (Origin Lab) software packages.  
 
Sample preparation for EM 

Mice were anesthetized via intraperitoneal injections of ketamine/xylazine, followed by 
transcardial perfusion with oxygenated Ringer’s solution. A second perfusion was performed 
using a buffer containing 2% paraformaldehyde, 2.5% glutaraldehyde, 150 mM cacodylate, and 2 
mM CaCl2. Brains were post-fixed overnight in the same solution at 4°C. 100 μm thick coronal 
slices were cut using a vibratome and prepared for SBEM imaging through the following 
sequential procedures: 1) Overnight post-fixation at 4°C, followed by washes in buffer containing 
150 mM cacodylate and 0.2 mM CaCl2; 2) Fixation at room temperature for 1 hour in 2% OsO4 in 
cacodylate; 3) Staining in 0.5% aqueous thiocarbohydrazide; 4) Staining with 2% aqueous OsO4; 
5) Overnight incubation at 4°C in 2% aqueous uranyl acetate; 6) Staining with lead aspartate at 
60°C for 30 minutes; 7) Dehydration on ice using 70%, 90%, and 100% ethanol, followed by dry 
acetone; 8) Infiltration with acetone ACM; 9) Embedding in 100% Durcupan resin at 60°C for 48 
hours. For steps 2 to 6, each procedure was followed by washes in water at room temperature. 
Approximately 1 mm2 tissue pieces were mounted on Gatan SBEM specimen pins using 
conductive silver epoxy.  

 
Acquisition and analysis of 3D-EM datasets 
SBEM imaging 

Samples were imaged under the Zeiss Merlin scanning electron microscope equipped with 
a Gatan 3View. Imaging was performed at 2.5 kV and 85 pA using a focal charge compensation 
device to minimize specimen charging (2.5x10-3 mbar nitrogen gas). ~110,000 µm3 stacks were 
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collected from the dorsal CA1sr using 15k x 15k raster images with 4 nm pixels, 2 µs pixel dwell 
time, and 60 nm Z steps. Acquired volumes were aligned in IMOD (41). 
 
Deep learning-based image segmentation 

Automatic segmentation of various subcellular structures was performed using CDeep3M, 
an image segmentation platform that leverages a convolutional neural network (CNN) (43, 44). 
This platform effectively processes multiple microscopy modalities, including SBEM. Network 
training and inference were conducted using the Docker-based version of CDeep3M on both local 
lab GPUs and Amazon Web Service (AWS). To increase efficiency, instead of training models 
from scratch, existing neural networks were retrained on the specific SBEM image sets used in 
this study. This domain adaptation approach reduced effort and time by 90%, while maintaining 
high segmentation accuracy. Pre-trained models for plasma membranes, mitochondria, vesicles, 
and synapses were downloaded from the publicly available Cell Image Library and retrained using 
manually segmented ground truth labels from each image stack. New models for dendritic spine 
heads, axon terminals, and astrocytes were trained from baseline. Training sessions employed 3D 
label sizes ranging from 48 to 192 μm3, with 45,000 to 70,000 iterations. The automatically 
segmented data were benchmarked against our manual reconstructions of the same features within 
a 47 μm3 volume. We also performed side-by-side comparisons of spine head volumes and spine 
densities per μm3, as measured in our datasets (96 μm3 and 48,000 μm3 for manual and CDeep3M-
assisted reconstructions, respectively), with previously published manual reconstructions of 42–
219 μm3 3D-EM stacks from CA1sr (27). All image contrast adjustments and manipulations were 
performed using Fiji/ImageJ (95). Validated models were applied to automatically segment entire 
volumes. The output prediction maps were stitched together and used for either fully automated 
reconstruction in IMOD or semi-automated reconstructions in VAST (20). For modeling the gross 
anatomy of neurites in the block, instance segmentation was performed using PyTorch 
Connectomics, a recently developed deep learning framework for automatic and semi-automatic 
annotation of connectomics datasets (42). The CNN was trained with image stacks in which all 
neurites and astrocytes were segmented. The trained network was used to predict an affinity map 
and a watershed algorithm was used to generate the dense segmentation. The automatic 
reconstructions from this pipeline were then used for 3D visualization. 
 
Automatic reconstructions  

Automated reconstructions were performed using IMOD and PyIMOD, a python library 
for manipulating IMOD files (https://github.com/CRBS/PyIMOD). Prediction maps of dendritic 
spine heads, axon terminals, synapses, vesicles, mitochondria, and astrocytes were initially 
generated in CDeep3M. Since each SBEM image set had slight variations in XY dimensions, 
cropped versions of the prediction maps were created, with dimensions of ~10,000 x 10,000 pixels 
across 500 Z-slices (48,000 µm3). Vesicle analysis was restricted to a smaller volume (~12,000 
µm3) due to the computational load. 2D contours for each feature were generated 
using Imodauto with thresholding, and small contour artifacts were automatically removed by 
defining a minimum area. 3D meshes for each object (except vesicles) were created 
using Imodmesh; objects were sorted into separate categories with Imodsortsurf. For final post-
processing, PyIMOD was employed to remove clipped objects touching the image set border 
(using RemoveBorderObjects) and to filter by contour number, specifying a minimum and 
maximum slice count (FilterByNContours). Volumes and counts for each object per block volume 
were extracted with Imodinfo. To obtain vesicle counts per terminal, the generated vesicle contour 
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and the final sorted axon terminal files were converted into TIFF format and imported 
into VAST using the Import Segmentation from Images function. Vesicle coordinates were 
extracted with the Vasttools Export Particle Clouds function. Due to the larger Z-step size (60 nm) 
of the image stacks compared to the vesicle diameters (~40 nm), each 2D contour on a separate 
slice was considered a unique vesicle. A custom MATLAB script was developed to count the 
number of vesicles per terminal by checking whether vesicle contour coordinates overlapped with 
a segmented terminal of a specific ID. Although the automated segmentation approach could 
introduce merge errors between closely located objects, we reasoned that this would not bias the 
results, as the same thresholding and filtering criteria were applied uniformly across all 
experimental conditions. The accuracy of the pipeline was further validated by comparing small-
scale automatic reconstructions with manual and instance-based segmentations of the same 
samples. We found only minimal feature merging, with no systematic bias across different 
samples. 
 
Semi-automatic segmentation 

Semi-automatic segmentations were performed using VAST Lite version 1.4.1, a voxel-
painting program designed for the analysis of large volumetric datasets (96). We used masked 
painting in VAST in combination with the CDeep3M predicted boundary maps to constrain 
painted areas so that the outline of each object is traced automatically. This approach enabled rapid 
and accurate reconstructions of axons, dendrites, synapses, and mitochondria. Errors arising from 
occasionally inaccurate boundary predictions were manually corrected. For dendrite and axon 
segmentation, membrane prediction boundary maps were used to fill the outlines of cellular 
structures. For mitochondria segmentation, a specific prediction map was applied for masked 
painting, ensuring the complete filling of each mitochondrial structure. Since this study focuses on 
excitatory circuits, the analysis was limited to spiny apical dendritic segments of PNs and axons 
that form glutamatergic synapses, as characterized by the presence of PSDs. All segmented volume 
data were extracted using VastTools in MATLAB for further analysis. 
 
Skeletonization and assignment of coordinates 

Skeletons for traced dendritic and axonal segments were generated using VAST. The 
Annotation function was employed to place connected nodes along the centerline of each 
reconstructed structure's cross-section, spanning from the first to the last slice of the image volume, 
at regular intervals. Image stacks containing dendritic spines or axonal terminals along the 
skeletonized length were marked to assess the distribution and distances of spines and terminals 
across the entire structure. In axons, nodes were placed in the inter-terminal spaces to account for 
the inherent curvature of the axons. In instances where an axon split to form a new branch, a single 
path was reconstructed to ensure compatibility with the majority of the dataset. Annotated length 
data were extracted using VastTools. 
 
Reporter tracing 

Projections and synapses were categorized as APEX2-mGFP positive (+) or negative (-
) through manual tracing of the reporter in pre-processed SBEM datasets. This strategy was 
employed due to concerns that the variability in peroxidase staining intensity across 
morphologically diverse structures of different sizes could reduce the accuracy of automatic 
detection. (+) axons and dendrites were identified by the presence of dark staining throughout their 
membranes, with intensified staining in smaller compartments serving as a clear indicator of 



 
 

6 
 

reporter expression. Axonal fibers exhibited notably stronger staining than dendrites, occasionally 
obscuring intracellular contents. However, this did not hinder the assessment of synapse 
distributions, and all reconstructed excitatory axons were included in the analysis. For 
mitochondrial localization within terminals, a few axons with staining too dark for segmentation 
were omitted. Staining intensity was comparable across blocks, with no significant difference in 
the fraction of excluded axons between samples. While the CNN models were trained on these 
image sets, prediction errors for labeled structures were more frequent due to the dark staining, 
thus corrections were made manually. Although slight differences in volume measurements 
between (+) and (-) structures may have arisen due to segmentation variations, virtually all 
documented morphological changes in (+) PNs of fear-conditioned mice were absent in mice 
exposed to neutral CS. Therefore, any potential differences in absolute volumes were not 
significant enough to affect the overall results. 

 
Reconstruction of (+) and (-) structures  

We reconstructed sets of (+) and randomly selected adjacent (-) dendrites with similar 
orientations. While the large apical dendritic trunks were present in the CA1sr, we focused on 
smaller, higher-order branches, which formed the majority of dendritic spines. The shaft diameters 
of selected dendrite pairs were matched, with only minimal variation observed across the entire 
set. To further reduce variability, spine measurements were performed on shorter segments (~100 
spines per branch). Axons were chosen based on the same criteria and were reconstructed 
throughout the block. Some spine-innervating axons formed at least one synapse with smooth, 
non-spiny dendrites, and there were occasional synapses onto dendritic shafts. These synapses 
were included in the synapse distribution measurements along axonal shafts but were excluded 
from volumetric measurements. 

 
Justification for excluding interneurons  

Consistent with previous studies demonstrating that Fos and other immediate early genes 
are expressed in GABAergic interneurons (77, 93, 97), we also observed labeling of putative 
inhibitory neuronal structures that formed symmetrical, shaft-targeted synapses. While intriguing, 
these reconstructions were excluded from the final quantifications. We reasoned that an in-depth 
analysis of inhibitory components of an engram goes beyond the scope of the present study, as 
there is still limited understanding of the morphological hallmarks of synapses from the diverse 
interneuron subtypes (77) that innervate PNs and other interneurons in different hippocampal 
subfields, including CA1sr. 
 
Classification of Terminals and Spines 

Nerve terminals were classified based on the number of innervated spines as either SSBs 
(1 spine) or MSBs (2+ spines). Due to the large distances typically separating presynaptic boutons 
along the axon, there was little ambiguity regarding which bouton a spine belonged to. 
Additionally, presynaptic and postsynaptic partners were identified by the presence of visible 
PSDs. In cases where the distinction between MSBs and SSBs was unclear due to irregular shapes, 
the continuity of the vesicle pool was used to define the terminal borders. Dendritic spines were 
classified into five morphologically distinct types: Mushroom (M), Thin (T), Stubby (S), Filopodia 
(F), and Bifurcated (B) as described previously (44, 98). Rare spines with unclear shapes were 
excluded from quantifications, except for measurements of distances between synapses. 
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Splitting of spine heads and terminals 
Spine heads and nerve terminals were manually separated from their parent structures using 

the Splitting tool in VAST. This process created new segments, which were then automatically 
volume-filled using the Filling tool. Spine heads were split at the base of the neck for clear 
delineation. For synapse analysis along projections, a few synapses were observed forming onto 
non-spiny, smooth dendrites and dendritic shafts. These constituted a small fraction of the total 
synapse pool and were excluded from volumetric measurements. Terminals were split at points 
where axonal cross-sections minimized, vesicle pools ended, or opposing PSDs terminated. 
 
PSD, ASI and ATI measurements 

PSDs were identified as darkly stained regions at the ends of dendritic spines, typically 
positioned opposite axonal terminals containing synaptic vesicles. PSDs were segmented 
in VAST by adjusting the pen size according to PSD thickness. Given that the visibility of the PSD 
can vary depending on the spine's orientation (e.g., cross-sectioned synapses may appear more 
continuous than oblique synapses), PSD volumes may have been underestimated in a few cases. 
However, this variability was unlikely to introduce significant bias, as the same segmentation 
criteria were applied consistently across all conditions, and large sample sizes were analyzed. 
Axon/spine and astrocyte/terminal interfaces (ASIs and ATIs) were defined as the entire contact 
area between the axon terminal and the postsynaptic spine or astrocyte. ASIs and ATIs were 
segmented in VAST using a fixed pen size across each plane of the synapse, except in the case of 
oblique synapses, where the entire contact zone was filled in the plane. Similar to PSD 
measurements, the same rationale applies for potential underestimation of ASI/ATI volumes due 
to synapse orientation. 
 
Mitochondria and SA 

Mitochondria-positive terminals were identified by the presence of one or more 
mitochondria within the boundaries of the bouton, following the criteria described above. 
Mitochondria were semi-automatically segmented in VAST using masked painting with 
a CDeep3M mitochondria prediction map. In cases where the prediction map contained errors, 
mitochondria were manually corrected or traced. Despite the dark staining of presynaptic 
compartments in (+) PNs, mitochondrial boundaries typically remained clearly distinguishable. 
Only a few (+) axons, in which all intracellular contents were obscured, were excluded from 
analysis. Spines were classified as SA-positive when stacks of SER folds were visible in their 
necks and/or heads. This population was distinguished from spines containing only a single tubular 
SER. 
 
Data extraction and analysis 

Large-scale automated reconstructions generated in IMOD were extracted in a Linux 
terminal using Imodinfo and saved as .csv files for analysis. This method was used to calculate the 
cubic density of spine heads, terminals, mitochondria, and vesicles. All other data extractions, 
including volume measurements, coordinates for length and distance measurements, and 3D 
surface meshes, were performed using VastTools in MATLAB. Uniform parameters were applied 
to all samples for data extraction and 3D model exports. Since VastTools allows quantification at 
lower resolutions, we used the native voxel size of the image stacks (4 nm x 4 nm x 60 nm) 
at Mipmap level 0. All numerical data were extracted prior to 3D modeling. 
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Volume measurements and 3D model extraction 

The volumes of dendritic spine heads, axonal terminals, PSDs, ASIs, ATIs, and 
mitochondria were measured using the Measure Segment Volume function, which calculates the 
total number of voxels for specified objects within a defined boundary. 3D models were generated 
using the Export 3D Models function, which creates surface meshes in VAST and exports them 
as .obj files for further modeling in Blender. To facilitate post-export smoothing, some features 
were exported as lower-resolution models (Mip 2-3). The Export Particle Clouds function was 
used to export 3D surface mesh models of vesicles (.obj files) for 3D modeling in Blender. 
 
Coordinate exporting 

Whole skeleton length measurements were extracted using the VastTools function 
Measure Skeleton Lengths, which sums the distances between nodes placed along neurites. Since 
internode length measurement functions are not available in the current version of VastTools, we 
developed custom MATLAB scripts that utilized API to extract these measurements. As 
mentioned above, skeleton nodes were placed along neuropil structures (e.g., axons) using 
the Annotation tool in VAST. To prevent overestimation of length, nodes were placed at the center 
of each structure. For dendrite analysis, nodes were positioned at the start and end of dendritic 
fragments, as well as at branching points where spines extended from the shaft. This allowed us to 
extract parameters such as dendritic fragment length, linear spine density, and distances between 
individual spines. Every dendritic protrusion was considered a spine. While the skeletonization 
approach for dendrites was also applied to axonal fibers, we accounted for the higher curvature of 
these structures by placing nodes at the beginning and end of each axon, in terminals contacting 
spines, and at intervals along the fibers to match their curvature. By flagging nodes corresponding 
to axonal terminals, we could accurately calculate axon length, terminal density, and distances 
between terminals. Rare axonal fibers innervating dendritic shafts were excluded from analysis, as 
they were presumed to be from interneurons. The exact coordinates of the nodes were extracted 
using the VAST API function Getannoobject, which outputs a matrix containing the x, y, and z 
coordinates of every node. We then designed MATLAB scripts to compute distances based on the 
type of analysis. All distance and length measurements were calculated using 
the MATLAB function Vecnorm, which computes the Euclidean norm, where a 
vector v with N elements is defined as: 
 

‖𝑣‖ = $%|𝑣!|"
#

!$%

 

 
 
3D Modeling 

Final 3D modeling was conducted either in the VAST 3D viewer or in Blender 
3.5 (Blender.org), an open-source 3D computer graphics software with robust modeling, material 
editing, and rendering capabilities. The VAST 3D viewer was primarily used for visualizing the 
raw EM block and large-scale reconstructions of axons and dendrites by 
combining CDeep3M and PyTorch Connectomics prediction maps with VAST’s Segmentation 
import functions. All other modeling was completed in Blender. First, 3D surface meshes of 
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neuropil structures were imported as .obj files without any post-import size scaling. To reduce 
computational load, most features were exported at a lower resolution (Mipmap level 2-3), while 
still maintaining their native scale. Importing .obj models from VastTools also preserved the 
spatial location of each segmented feature, ensuring that the actual spatial distribution from the 
SBEM image stack remained intact. Synaptic vesicles were represented using pre-made 40 nm 3D 
models included with VastTools. Smoothing, color enhancements, and material assignments were 
applied equally across all conditions and brains. Color-coding and patterning schemes for each 
feature are described in the figure legends. Except for vesicles, all structures were smoothened 
using the Smooth vertices function in Blender. Final scenes were rendered using the Cycles 
Renderer. 
 
Data blinding 

To ensure consistency in annotations and eliminate potential bias, manual tracing of all 
subcellular structures, as well as classification and extraction of various synaptic parameters, were 
conducted by multiple trained investigators who were blinded to the experimental conditions. 
 
Quantifications and statistics 

All final quantifications, curve fittings, and statistical analyses were performed 
using Origin Pro. Most measured parameters, such as terminal-to-spine distances and the sizes of 
various structures within individual synapses, deviated significantly from a normal distribution. 
Therefore, non-parametric statistical tests were employed throughout much of the study. Standard 
comparisons of populations were assessed using Mann-Whitney U Test or Kruskal-Wallis 
ANOVA. For datasets where the Kruskal-Wallis ANOVA indicated a significant group effect, 
post-hoc analyses were performed using Dunn's test to compare individual groups. For comparison 
of mice (box with data overlap plots), p values were determined by t-test with Welch correction. 
Correlation analyses were performed using either Spearman or Pearson tests, depending on the 
dataset. Differences between Spearman correlation coefficients were statistically evaluated using 
the Fisher transformation test. For correlation analyses where Pearson's correlation coefficient was 
calculated, we employed a weighted linear regression approach to account for varying precision 
across data points. Each data point was assigned a weight equal to the inverse of the square of its 
standard error. The decision to use the Lognormal probability density function (PDF) (99) for 
analyzing distributions was based on a systematic side-by-side comparison of each dataset 
with Gaussian, Exponential, Weibull, Lognormal, and Gamma fitting functions, along with 
a Kolmogorov-Smirnov test for goodness-of-fit. These analyses indicated that the Lognormal PDF 
was the most versatile fit for our data, with the exception of the ATI data where Exponential fits 
were more appropriate.  
 
The PDF of a lognormal distribution is: 
 

𝑦 = 𝑓(𝑥 ∣ 𝜇, 𝜎) =
1

𝑥𝜎√2𝜋
exp	(

−(𝑙𝑜𝑔𝑥 − 𝜇)"

2𝜎" ), 	 𝑓𝑜𝑟 𝑥 > 0. 
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Fig. S1. Irreversible chemogenetic labeling of transiently activated neurons with FosDD-Cre. 
(A) Schematic showing viral delivery of loxP-flanked reporters into the brains of FosDD-Cre knock-in mice, TMP-
inducible stabilization of DD-Cre in Fos-positive neurons, and the DIO:APEX2-mGFP adeno-associated virus (AAV) 
used for reconstructions. (B) Acute induction of viral reporters with TMP in neurons recruited for memory acquisition. 
(C and D) FosDD-Cre mice were co-injected into areas CA3 and CA1 with AAVs encoding DIO:APEX2-mGFP and 
tdTomato, driven by the constitutive Synapsin promoter. (C) Low-magnification images of tdTomato fluorescence 
demonstrate consistent virus targeting in the hippocampus under different conditions used for the quantifications 
presented in Fig. 1E. (D) Examples of APEX2-GFP expression in the CA1 of untrained and fear-conditioned mice. 
(E) Additional controls show that sparse, experience-dependent labeling of cellular ensembles in FosDD-Cre mice does 
not reflect poor virus penetrance or recombination efficiency. Mice were injected with two AAVs expressing Cherry-
H2B and GFP in a Cre-inducible and constitutive manner, respectively. Note that Cherry-positive cells are detected 
only after TMP treatment, with an increased number following CFC, while the constitutive expression of GFP under 
the Synapsin (Syn) promoter is widespread in all experimental settings. In all experiments, single doses of TMP (50 
µg/g body weight) or control vehicle solution were administered intraperitoneally 30 minutes post-training. 
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Fig. S2. Expression of native Fos in neurons carrying a single FosDD-Cre allele. 
(A and B) Neurons were isolated from the cortices of wild-type (WT) or heterozygous FosDD-Cre knock-in mice and 
maintained in vitro for 14 days. Cultures were then immunostained with an antibody against Fos under control 
conditions or after 10 minutes of depolarization with 20 mM KCl. (A) Typical images of Fos immunofluorescence in 
DAPI-stained samples. Insets show co-labeling for Fos and the pan-neuronal marker, MAP2. (B) Fractions of Fos-
positive neurons in unstimulated and stimulated cultures (n = 4/group). Note that the induction of Fos in the absence 
of KCl treatment reflects typically high spontaneous network activity in cortical cultures. (C) Images of Fos 
immunofluorescence in brain sections from heterozygous FosDD-Cre and WT mice. Staining was performed either 
without behavioral conditioning (HC – home cage) or 1 hour after exposure to a conditioned stimulus (CS) or 
contextual fear conditioning (CFC). Scale bars apply to all panels displaying each brain region. 
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Fig. S3. Electrophysiological analyses of neuronal excitability and synaptic strength. 
(A to C) Control experiments showing that the altered electrical properties of PNs with a remote history of activity 
during associative learning (as summarized in main Fig. 1, F to 1H) are not due to the expression of APEX2-mGFP 
per se. (A) Schematic of side-by-side whole-cell recordings from randomly labeled and neighboring unlabeled CA1 
PNs in acute hippocampal slices. Random labeling was achieved by injecting a diluted virus into the hippocampus of 
constitutive Camk2Cre driver mice, which mediates recombination in all mature glutamatergic neurons.  (B) Sample 
traces of action potentials (APs) evoked by a 100 pA current injection. (C) Number of APs (Mean ± S.E.M.) plotted 
relative to stimulus intensity. n =3 mice/7 neurons per group. (D to H) Synaptic properties of CA1 PNs were assessed 
7 days after experience-dependent labeling. (D) Schematic of side-by-side whole-cell recordings from Fos/APEX2-
mGFP-negative (-) and positive (+) cells in acute hippocampal slices from fear-conditioned, TMP-treated FosDD-Cre 
mice. (E and F) PNs with a remote history of activity during associative learning do not exhibit widespread changes 
in synaptic strength. Panels show sample traces of evoked AMPA- and NMDA-type excitatory postsynaptic currents 
(E, blue arrows indicate the times of 1 ms electrical stimulation through a local extracellular electrode) and 
quantifications of AMPA/NMDA ratios (F). n =3 mice/6 neurons per group. In (F) and subsequent similar panels, 
graphs display individual data points (open circles), mean values (filled circles), standard errors (boxes), standard 
deviations (vertical whiskers), and medians (horizontal lines). p values were determined by t-tests. (G and H) PNs 
with a remote history of activity during associative learning do not exhibit widespread changes in presynaptic release 
probability. Panels show sample traces of AMPA-type currents evoked by two closely spaced 1 ms stimuli (G) and 
quantifications of paired pulse EPSC ratios (PPR). n = 2 mice/4 neurons per group. In panels (E) and (G), scale bars 
apply to all traces.   
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Fig. S4. Fear-conditioned mice retained stable memory at the time of tissue collection for 
SBEM. 
(A) Experimental design. Mice were subjected to CFC or a neutral CS and then re-tested in the original context 7 days 
later. (B) Quantification of freezing behavior before (habituation) and 7 days after training. n = 10 mice per group. p 
value was calculated by t-test. 
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Fig. S5. Examples of raw SBEM data. 
(A) Schematic of excitatory pathways in the CA1 region and a typical 3D-EM stack collected from the area of the 
stratum radiatum (SR) marked by a blue box. (B) Original 2D EM images with actual coordinates of 3D stacks 
acquired from three different fear-conditioned mice (blue boxes).  
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Fig. S6. Automated segmentation of subcellular structures in SBEM stacks. 
(A) Workflow for image segmentation using the cloud-based machine learning platform, CDeep3M. (B) Example of 
automatically segmented plasma membranes. (C) Examples of automatically segmented presynaptic terminals, 
neurotransmitter vesicles, dendritic spines, postsynaptic densities (PSDs), and mitochondria. For each structure, both 
the original 2D EM images with color-coded templates and the resulting 3D reconstructions are shown. Scale bars 
apply to all panels. (D) Network training parameters for segmentation of the indicated structures. (E and F) Examples 
of benchmarking CDeep3M performance. (E) Number of different structures identified manually or with CDeep3M 
in the same 3D-EM test sets. (F) Comparisons of spine head volumes and spine densities, showing manual 
measurements from the rodent CA1 (from an independent study, Mishchenko et al., PMID: 20869597) alongside 
manual and automatic measurements from the current datasets.     
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Fig. S7. Examples of annotated SBEM stacks with basic quantifications. 
(A) Saturated reconstructions of axons and presynaptic terminals in the entire volume. (B and C) Saturated 
reconstructions of axons with presynaptic terminals (B) and dendrites (C) in ~1/9th of the total 3D volume. Individual 
projections are displayed in different colors. Scale bar applies to both panels. (D) Reconstructions of all synapses and 
mitochondria in volumes acquired from mice subjected to CFC or CS. Structures are color-coded as shown in fig. 
S6C. Scale bar applies to both images. (E) Averaged counts of terminals, vesicles, and spines per µm3, as assessed in 
difference mice. (F) Distributions of vesicle counts in individual synapses, with lognormal curves and fitting 
parameters shown. n - sample sizes; m - medians; s - standard deviations of logarithmic values. (G) Raw values for 
the indicated parameters, as assessed in partial volumes.   
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Fig. S8. Examples of local connectomes of PNs in the CA1sr of fear-conditioned mice.  
(A) Schematic of experience-dependent labeling. (B) Reconstructions of dendritic branches of Fos/APEX2-mGFP-
negative (-) and positive (+) PNs, along with fibers and terminals of all incoming SchC axons, displayed in different 
colors. Scale bar applies to both images.    
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Fig. S9. Analysis of axonal wiring in the CA1sr of mice subjected to CFC or CS.   
(A) Schematic of experience-dependent labeling and data categorization. (B) Typical examples of reconstructed 
Fos/APEX2-mGFP-negative (-) and positive (+) SchC axons in a full SBEM stack. Only a few unlabeled fibers are 
displayed. (C) Reconstructions of SchC axons terminating in the CA1sr. Different dendrites (marked as D) of CA1 
neurons are numbered and color-coded based on activity history. Scale bar applies to both images. (D) Examples of 
unbranched and branched axons. Scale bar applies to both images.   (E) Fractions of branched axons for the indicated 
experimental conditions, assessed in different mice. CFC, n = 3 mice; CS, n = 2. p values were calculated using t-tests 
with Welch correction.   
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Fig. S10. Analysis of axonal wiring through MSBs. 
(A) Schematic of experience-dependent labeling and data categorization. (B) Heatmaps representing the numbers of 
spines innervated by each terminal of individual Fos/APEX2-mGFP-negative (-) and positive (+) SchC axon in the 
CA1sr of fear-conditioned mice (n = 3). (C and D) Heatmaps representing axonal wiring via MSBs in the CA1sr of 
mice subjected to CFC (C, n = 3) or CS alone (D, n = 2). Each box in the vertical columns shows the numbers of 
color-coded postsynaptic counterparts of each MSB formed by individual Fos/APEX2-mGFP-negative (-) and positive 
(+) SchC axons (horizontal rows, SSBs are omitted). (E) Cumulative counts of MSBs of (-) and (+) axons terminating 
onto (+) dendrites of previously activated CA1 PNs in fear-conditioned mice.  p value was calculated using a t-test 
with Welch correction.  
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Fig. S11. Distributions of terminal and spine head volumes.   
The sizes of individual excitatory synapses formed by PNs with remote histories of activity correlated with fear 
learning (n = 3 mice) or exposure to a neutral CS (n = 2) were measured in the CA1sr using Fos/APEX2-mGFP 
labeling on either post- (CA1 dendrites) or presynaptic side (SchC axons) as a frame of reference. (A) Schematic of 
experience-dependent labeling. (B to Q) Distributions of spine head and terminal volumes. Each panel shows 
lognormal curves with fitting parameters. n - sample sizes; m - medians; s - standard deviations of logarithmic values. 
Datasets are categorized as shown in the legends. (B to E) Synapse sizes in fear-conditioned mice. (B) Spine volumes 
of (-) and (+) CA1 PNs, measured irrespective of axonal labeling. (C) Spines innervated by (-) and (+) CA3 PNs, 
measured irrespective of postsynaptic labeling. (D) Terminals innervating (-) and (+) CA1 PNs (postsynaptic label 
only). (E) Terminals of (-) and (+) CA3 PNs (presynaptic label only). (F to I) Same analyses as in (B to E) were 
performed in mice subjected to CS. (J to Q) Synapses were further subdivided as SSBs and MSBs. (J to M) Spine 
head and terminal volumes in mice subjected to CFC. (N to Q) Spine head and terminal volumes in mice subjected to 
CS. All volumetric measurements are displayed in nm3. p values were calculated using Mann-Whitney tests. 
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Fig. S12. Correlations between the sizes of pre- and postsynaptic structures.  
Proportionalities between the sizes of core structural elements of individual synapses were measured in the CA1sr of 
fear-conditioned mice. Datasets were categorized based on the history of CA3 neuron activity, as indicated in the 
legends. (A) Schematic of experience-dependent labeling. (B to G) Correlations between the indicated parameters. 
Scatter plots with confidence ellipses, sample sizes (n), Spearman correlation coefficients (rs), Fisher transformation 
scores (z) and p values are shown. (B) Terminal vs. spine head volumes for all synapses. (C) Terminal vs. PSD 
volumes for all synapses. (D) Terminal vs. ASI volumes for all synapses. (E) Terminal vs. spine head volumes in 
SSB-type synapses. (F) Terminal vs. PSD volumes in SSB-type synapses. (G) Terminal vs. ASI volumes in SSB-type 
synapses. 
All quantifications are from 3 separate mice (7 days post-CFC). Volumetric measurements are displayed in nm3.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

22 
 

 
 
 

 
 
Fig. S13. Analysis of intracellular membrane organelles. 
(A) Schematic of experience-dependent labeling and data categorization. (B) Raw 2D images with traced presynaptic 
mitochondria (red) and postsynaptic spine apparatus (SA, cyan).  (C) Reconstructions of mitochondria, smooth 
endoplasmic reticulum (SER), and SA in SchC axons and/or their target dendrites of PNs in CA1sr. Structures are 
color-coded as indicated in the legend. (D to E) Fractions of mitochondria-containing terminals formed by 
Fos/APEX2-mGFP-negative (-) and positive (+) axons of mice subjected to CFC (n = 2) or CS alone (n = 2). (D) All 
terminals. (E) SSBs. (F) MSBs. p values were calculated using t-tests with Welch correction.   
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Fig. S14. Interaction between presynaptic terminals and astrocytes.  
(A) Schematic of experience-dependent labeling and data categorization. (B) Raw 2D images showing a traced 
astrocytic process contacting a presynaptic terminal. Structures are color-coded as indicated in the legend. The 
glycogen deposits are marked by white arrows. (C) Fractions of astrocyte-contacting terminals formed by 
Fos/APEX2-mGFP-negative (-) and positive (+) axons in mice subjected to CFC (n = 3) or CS alone (n = 2). p values 
were calculated using a t-test with Welch correction. (D) Distributions of astrocyte/terminal interfaces (ATIs, nm3) 
for (-) and (+) terminals in fear-conditioned mice (n = 3). p value was calculated using a Mann-Whitney test. (E) 
Correlations between ATI and terminal volumes (nm3) for (-) and (+) terminals in fear-conditioned mice CFC (n = 3). 
Scatter plots with confidence ellipses, sample sizes (n), Spearman correlation coefficients (rs), Fisher transformation 
scores (z) and p values are shown. 
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Data S1 
Excel spreadsheets with individual datapoints and quantifications for panels presented in Fig. 1, 
fig. S3, fig, S4, fig. S6, and fig. S7.  
 
Data S2 
Excel spreadsheets with individual datapoints and quantifications for panels presented in Fig. 2 
and fig. S9.  
 
Data S3 
Excel spreadsheets with individual datapoints and quantifications for panels presented in Fig. 3 
and fig. S10.  
 
Data S4 
Excel spreadsheets with individual datapoints and quantifications for panels presented in Fig. 4, 
Fig 5, and fig. S11.  
 
Data S5 
Excel spreadsheets with individual datapoints and quantifications for panels presented in Fig. 6, 
Fig 7, fig. S13, and fig. S14.  
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